GC23L-1265
Microbial community in alpine forest soils along an altitudinal gradient on the Tibetan Plateau

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Ang Hu, Gengxin Zhang, Yanli Yuan and Conghai Han, ITP Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
Abstract:
The Tibetan Plateau, ‘the third pole’, has been reported to be sensitive to global change, but the understanding of the relationship between altitude and composition & diversity of microorganisms in this region is poorly characterized. In this study, 18 alpine forest soils located at 704 to 3760 m a.s.l on Tibetan Plateau were selected to investigate the microbial communities by 16S rRNA ion torrent sequencing. Both microbial community richness and evenness were negatively associated with altitude. Pearson correlation analysis indicated that microbial communities were significantly correlated with many environmental variables including temperature, C/N ratio, ammonium and nitrate nitrogen besides altitude. A total of 32 bacterial phyla were detected. Proteobacteria (31.7% average relative abundance) and Acidobacteria (24.0%) had the highest relative abundances across all altitudes. Verrucomicrobia, Actinobacteria, Planctomycetes, Bacteroidetes, Chloroflexi, Firmicutes and Nitrospira were also relatively abundant (1–10%). Bacterial communities in relative abundance at different taxonomic levels showed distinct trends with altitude. Acidobacteria sequences, especially of the class Acidobacteria_Gp1, Gp2 and Gp3, were significantly more abundant at higher altitudes, while Gp4, Gp6 and Gp17 were more favorable to lower altitudes. Alphaproteobacteria sequences, especially of the order Rhodospirillales, were significantly more abundant at higher altitudes, while Rhodobacterales and Sphingomonadales favored lower altitudes. The order of Nitrosomonadales and Rhodocyclales within Betaproteobacteria were significantly increasing with the altitude, while Burkholderiales displayed the declining trends. The order of Desulfuromonadales and Syntrophobacterales within Deltaproteobacteria were significantly increasing with the altitude, while Bdellovibrionales and Myxococcales showed the decreasing trends. The order of Chromatiales and Xanthomonadales within Gammaproteobacteriawere significantly favorable to the lower altitudes. These insights into the microbial community and the main controlling factors in alpine forest soils of the Tibetan Plateau provide a valuable background for further studies on biogeochemical processes in this distinct ecosystem.