SH33C-09
Kappa Distribution in a Homogeneous Medium: Adiabatic Limit of a Super-diffusive Process?

Wednesday, 16 December 2015: 15:28
2009 (Moscone West)
Ilan Roth, University of California, Space Sciences, Berkeley, CA, United States
Abstract:
The classical statistical theory predicts that an ergodic, weakly interacting system like charged particles in the presence of electromagnetic fields, performing Brownian motions (characterized by small range deviations in phase space and short-term microscopic memory), converges into the Gibbs-Boltzmann statistics. Observation of distributions with a kappa-power-law tails in homogeneous systems contradicts this prediction and necessitates a renewed analysis of the basic axioms of the diffusion process: characteristics of the transition probability density function (pdf) for a single interaction, with a possibility of non-Markovian process and non-local interaction. The non-local, Levy walk deviation is related to the non-extensive statistical framework. Particles bouncing along (solar) magnetic field with evolving pitch angles, phases and velocities, as they interact resonantly with waves, undergo energy changes at undetermined time intervals, satisfying these postulates. The dynamic evolution of a general continuous time random walk is determined by pdf of jumps and waiting times resulting in a fractional Fokker-Planck equation with non-integer derivatives whose solution is given by a Fox H-function. The resulting procedure involves the known, although not frequently used in physics fractional calculus, while the local, Markovian process recasts the evolution into the standard Fokker-Planck equation. Solution of the fractional Fokker-Planck equation with the help of Mellin transform and evaluation of its residues at the poles of its Gamma functions results in a slowly converging sum with power laws. It is suggested that these tails form the Kappa function. Gradual vs impulsive solar electron distributions serve as prototypes of this description.