DI11A-2573
Effects of post-perovskite phase transition properties on the stability and structure of primordial reservoirs in the lower mantle of the Earth

Monday, 14 December 2015
Poster Hall (Moscone South)
Yang Li1, Frederic Deschamps1, Paul Tackely2 and Manatschal Gianreto3, (1)Institute of Earth Sciences Academia Sinica, Taipei, Taiwan, (2)ETH Zurich, Zurich, Switzerland, (3)IPG, Strasbourg, France
Abstract:
Two key features of the lowermost Earth’s mantle are the presence of the large low shear-wave velocity provinces (LLSVPs), which may be reservoirs of primordial, chemically distinct material, and the phase change from perovskite (pv) to post-perovskite (ppv), which may occur at lowermost mantle conditions. However, the influence of this phase change on the shape, dynamics, and stability of chemically distinct reservoirs are not well constrained. Here we performed numerical experiments of thermo-chemical convection in 2-D spherical annulus geometry to investigate the effects on thermo-chemical structure in the lower mantle of three parameters affecting the pPv phase change: the core-mantle (CMB) temperature, the viscosity ratio between pv and pPv, and the Clapeyron slope of the pPv phase transition. Our results indicate that increasing CMB temperature increases the wavelength of the primordial reservoirs by preventing the phase transition from pv to pPv to occur. Furthermore, a high CMB temperature promotes the development of plumes outside the reservoirs of primordial material. High CMB temperature and large Clapeyron slope both favor the formation of pPv patches and of a double-crossing of the phase boundary, thus preventing the formation of continuous layer of pPv above the CMB. Combined with a low CMB temperature and/or a low Clapeyron slope of the pPv phase transition, a full layer of weak pPv above CMB strongly enhances the mixing efficiency of primordial material with ambient regular mantle material, which may not allow the generation of large reservoirs. Based on our experiments, we conclude that the models of convection best describing the Earth’s mantle dynamics include a large pPv Clapeyron slope (typically in the range of 13-16 MPa/K), and a moderate CMB temperature (around 3750 K). We also find that the phase change from pv to pPv may occur within the large reservoirs in the form of small discontinuous patches at the base when using critical values of CMB temperature a little bit above the low bound, which need to be examined by high-resolution seismological observations.