V23B-3165
Compositional effects of organic material in HC potential assessment

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Wei Pin Luo, NCU National Central University of Taiwan, Institute of Applied Geology, Jhongli, Taiwan
Abstract:
Studies of petroleum system is the main theme of hydrocarbon potential assessment, in which the characteristics of source rock is especially worth noticed. In recent years, besides the growth of conventional hydrocarbon resources being rapidly utilized, the exploration of unconventional deposits is getting more and more important. Since Taiwan has a strong energy demand and still highly relied on imported fossil fuel, the development of unconventional gas resources needs to be considered. This research discussed the relationship among characteristics and thermal maturity of different organic material versus their hydrocarbon potential. In order to compare the compositional effects from different organic material, torbanites from Huangxian basin, China and Miocene humic coal from Chuhuangkeng Anticline (one of the most productive oil and gas fields), Taiwan were examined and compared. Torbanites from China had relatively low maturation with vitrinite reflectance 0.38~0.51%, whereas the maturation of humic coal from Chuhuangkeng Anticline are a little bit higher with vitrinite reflectance 0.55~0.6%, plus some methane explored. Methods of study include petrographic analysis, vitrinite reflectance measurement (Ro%), Rock-Eval pyrolysis, and other geochemical parameters. The conclusions were derived after comparing experimental results and the regional geologic information of samples studied. In conclude, sample from China is type I kerogen, and its organic matter is mostly algae, whereas the humic coal sample from Taiwan belongs to type III kerogen. The analytic results indicate that the characteristics organic matters affect their maturity. Even though the thermal history and depositional environments are different in Taiwan and China, their organic micelles still exhibit a similar trend in the process of coalification. The role of maceral composition played in HC potential needs to be considered in future shale gas exploration.