IN11B-1779
Carbon sequestration and water flow regulation services in mature Mediterranean Forest
Abstract:
We develop a forestland use and management model that integrates spatially-explicit biophysical and economic data, to estimate the expected pattern of climate regulation services through carbon dioxide (CO2) sequestration in tree and shrubs biomass, and water flow regulation. We apply this model to examine the potential trade-offs and synergies in the supply of CO2 sequestration and water flow services in mature Mediterranean forest, considering two alternative forest management settings. A forest restoration scenario through investments in facilitating forest regeneration, and a forestry activity abandonment scenario as result of unprofitable forest regeneration investment. The analysis is performed for different discount rates and price settings for carbon and water.The model is applied at the farm level in a group of 567 private silvopastoral farms across Andalusia (Spain), considering the main forest species in this region: Quercus ilex, Q. suber, Pinus pinea, P. halepensis, P. pinaster and Eucalyptus sp., as well as for tree-less shrubland and pastures. The results of this research are provided by forest land unit, vegetation, farm and for the group of municipalities where the farms are located.
Our results draw attention to the spatial variability of CO2 and water flow regulation services, and point towards a trade-off between those services. The pattern of economic benefits associated to water and carbon services fluctuates according to the assumptions regarding price levels and discounting rates, as well as in connection to the expected forest management and tree growth models, and to spatially-explicit forest attributes such as existing tree and shrubs inventories, the quality of the sites for growing different tree species, soil structure or the climatic characteristics. The assumptions made regarding the inter-temporal preferences and relative prices have a large effect on the estimated economic value of carbon and water services. These results highlight the uncertainties over the provision of forest ecosistem services under changing economic conditions and social preferences.