B53E-0611
Estimation of Aboveground Biomass Change for Tropical Deciduous Forest in Bago Yoma, Myanmar between year 2000 and 2014 using Landsat Images and Ground Measurements

Friday, 18 December 2015
Poster Hall (Moscone South)
Khine Zaw Wynn1, Hyun Seok Kim2 and Youngryel Ryu1, (1)Seoul National University, Seoul, South Korea, (2)Seoul National University, Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul, South Korea
Abstract:
Even with recently increased awareness of the environmental conservation, the degradation of tropical forests are still one of the major sources of global carbon emission. Especially in Myanmar, the pressure to develop natural forest is growing rapidly after the change from socialism to capitalism in 2010. As the initial step of the forest conservation, the aboveground biomass(AGB) of South Zarmani Reserved Forest in Bago Yoma region were estimated using Landsat 8 OLI after the evaluation with 100 sample plot measurements. Multiple linear regression (MLR) model of band values and their principal component analysis (PCA) model were developed to estimate the AGB using the spectral reflectance from Landsat images and elevation as the input variables. The MLR model had r2 = 0.43, RMSE = 60.2 tons/ha, relative RMSE = 70.1%, Bias = -9.1 tons/ha, Bias (%) = -10.6%, and p < 0.0001, while the PCA model showed r2 = 0.45, RMSE = 55.1 tons/ha, relative RMSE = 64.1%, Bias = -8.3 tons/ha, Bias (%) = -9.7%, and p < 0.0001. The AGB maps of the study area were generated based on both MLR and PCA models. The estimated mean AGB values were 74.74±22.3 tons/ha and 73.04±17.6 tons/ha and the total AGB of the study area are about 5.7 and 5.6 million tons from MLR and PCA, respectively. Then, Landsat 7 ETM+ image acquired on 2000 was also used to compare the changing of AGB between year 2000 and 2014. The estimated mean AGB value generated from the Landsat 7 ETM+ image was 78.9±16.9 tons/ha, which is substantially decreased about 7.5% compared to year 2014. The reduction of AGB increased with closeness to village, however AGB in distant areas showed steady increases. In conclusion, we were able to generate solid regression models from Landsat 8 OLI image after ground truth and two regression models gave us very similar AGB estimation (less than 2%) of the study area. We were also able to estimate the changing of AGB from year 2000 to 2014 of South Zarmani Reserved Forest, Bago Yoma, Myanmar.