A51I-0184
A Novel Tool for Simulating Aerosol-cloud Interactions with a Sectional Model Implemented to a Large-Eddy Simulator
Abstract:
A new cloud-resolving model setup for studying aerosol-cloud interactions, with a special emphasis on partitioning and wet deposition of semi-volatile aerosol species, is presented. The model is based on modified versions of two well-established model components: the Large-Eddy Simulator (LES) UCLALES, and the sectional aerosol model SALSA, previously employed in the ECHAM climate model family.Implementation of the UCLALES-SALSA is described in detail. As the basis for this work, SALSA has been extended to include a sectional representation of the size distributions of cloud droplets and precipitation. Microphysical processes operating on clouds and precipitation have also been added. Given our main motivation, the cloud droplet size bins are defined according to the dry particle diameter. The droplet wet diameter is solved dynamically through condensation equations, but represents an average droplet diameter inside each size bin. This approach allows for accurate tracking of the aerosol properties inside clouds, but minimizes the computational cost. Since the actual cloud droplet diameter is not fully resolved inside the size bins, processes such as precipitation formation rely on parameterizations. For realistic growth of drizzle drops to rain, which is critical for the aerosol wet deposition, the precipitation size bins are defined according to the actual drop size. With these additions, the implementation of the SALSA model replaces most of the microphysical and thermodynamical components within the LES.
The cloud properties and aerosol-cloud interactions simulated by the model are analysed and evaluated against detailed cloud microphysical boxmodel results and in-situ aerosol-cloud interaction observations from the Puijo measurement station in Kuopio, Finland. The ability of the model to reproduce the impacts of wet deposition on the aerosol population is demonstrated.