SH23A-2428
Smaller Forbush Decreases in Solar Cycle 24: Effect of the Weak CME Field Strength?

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Neeharika Thakur, NASA Goddard Space Flight Center, Greenbelt, MD, United States
Abstract:
A Forbush decrease (FD) is a sudden depression in the intensity of galactic cosmic ray (GCR) background, followed by a gradual recovery. One of the major causes of FDs is the presence of magnetic structures such as magnetic clouds (MCs) or corotating interaction regions (CIRs) that have enhanced magnetic field, which can scatter particles away reducing the observed GCR intensity. Recent work (Gopalswamy et al. 2014, GRL 41, 2673) suggests that coronal mass ejections (CMEs) are expanding anomalously in solar cycle 24 due to the reduced total pressure in the ambient medium. One of the consequences of the anomalous expansion is the reduced magnetic content of MCs, so we expect subdued FDs in cycle 24. In this paper, we present preliminary results from a survey of FDs during MC events in cycle 24 in comparison with those in cycle 23. We find that only ~17% FDs in cycle 24 had an amplitude >3%, as compared to ~31% in cycle 23. This result is consistent with the difference in the maximum magnetic field intensities (Bmax) of MCs in the two cycles: only ~ 10% of MCs in cycle 24 have Bmax>20nT, compared to 22% in cycle 23, confirming that MCs of cycle 24 have weaker magnetic field content. Therefore, we suggest that weaker magnetic field intensity in the magnetic clouds of cycle 24 has led to FDs with smaller amplitudes.