P21A-2096
An MHD simulation of plasmoid instability in the dayside ionosphere of an unmagnetized planet

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Sakamoto Hitoshi, Naoki Terada and Yasumasa Kasaba, Tohoku University, Sendai, Japan
Abstract:
A numerical simulation of magnetic reconnection in the dayside ionosphere of an unmagnetized planet and a comparison of the size distribution of flux ropes obtained from simulation with that from observation will be reported. Flux ropes have been frequently observed in the dayside ionospheres of Venus and Mars[Russell and Elphic, 1979; Cloutier et al.,1999] and their radius has been found to be between 6 to 12 km near the subsolar location of Venus[Russell et al., 1990]. Dreher et al. [1995] suggested using an MHD simulation that reconnection caused by an IMF rotation can generate flux ropes at the Venus ionopause. However, Dreher et al. [1995] examined only the linear stage of reconnection, so the nonlinear stage that takes into consideration the vertical convection of the reconnection site along the intrinsic convection in the Venus ionosphere has yet to be investigated. In this study, using a 2-D multi-species MHD simulation, the spatiotemporal evolution of reconnection in the ionosphere of Venus is examined. The size distribution of flux ropes is also examined and the validity of the generation mechanism of flux ropes is discussed by comparing the rope size distribution with the observed one. In the ionosphere of Venus, our simulation result shows that plasmoid instability [Loureiro et al., 2007] occurs in a Sweet-Parker (SP) current sheet above the altitude where Lundquist number exceeds 106, and consequently many plasmoids are generated. In the nonlinear stage, secondary reconnections occur in the current sheets, which exist between adjacent pairs of plasmoids, and thus smaller flux ropes are created. It has been suggested that the smaller side of the size distribution increases as a result of hierarchical reconnections in the SP current sheet [Shibata et al., 2001]. The observational size distribution [Vignes et al., 2003] shows that the population of small flux ropes is larger than that of large ones and it is consistent with the simulation result. Through plasomoid coalescences, a small number of monster plasmoids [Loureiro et al., 2012], which are larger in size than the initial current sheet thickness, are generated in the nonlinear stage. These plasmoids are as large as the giant ropes observed by Venus Express [Zhang et al., 2012], and it is suggested that the giant ropes can be generated by the plasmoid instability.