H43G-1614
Microbial life in variably saturated soil aggregates – upscaling gaseous fluxes across distributed aggregate sizes in a soil profile

Thursday, 17 December 2015
Poster Hall (Moscone South)
Ali Ebrahimi and Dani Or, ETH Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
Abstract:
Recent studies revealed highly dynamic and rich behavior of microbial communities inhabiting soil aggregates. Modeling of these processes in three dimensional (unsaturated) pore networks provided insights into the unique conditions essential for coexistence of oxic and anoxic microsites that shape (and respond to) aerobic and anaerobic microbial communities. Soil hydration dynamics continuously alter the spatial extent of anoxic niches (hotspots) that flicker in time (hot moments) and support anaerobic microbial activity even in unsaturated and oxic soil profiles. We extend a model for individual-based microbial community growth in 3-D angular pore networks mimicking soil aggregates of different sizes placed in different ambient boundary conditions reflecting profiles of water, carbon, and oxygen in soil. An upscaling scheme was developed to account for aerobic and anaerobic activity within each aggregate class size and soil depth integrated over the aggregate size distribution in the soil for a range of hydration conditions. Results show that dynamic adjustments in microbial community composition affect CO2 and N2O production rates in good agreement with experimental data. The modeling approach addresses a long-standing challenge of linking hydration conditions to dynamic adjustments of microbial communities within “hotspots” with the emergence of “hot moments” reflecting high rates of denitrification and organic matter decomposition.