DI34A-07
Lithospheric Controls on Magma Composition along Earth's Longest Continental Hotspot-Track

Wednesday, 16 December 2015: 17:30
301 (Moscone South)
Rhodri Davies1, Nicholas Rawlinson2, Giampiero Iaffaldano1 and Ian H Campbell1, (1)Australian National University, Canberra, ACT, Australia, (2)Australian National University, Canberra, Australia
Abstract:
Hotspots are anomalous regions of volcanism at Earth's surface that show no obvious association with tectonic plate boundaries. Classic examples include the Hawaiian-Emperor chain and the Yellowstone-Snake River Plain province. The majority are believed to form as Earth's tectonic plates move over long-lived mantle plumes: buoyant upwellings that bring hot material from Earth's deep-mantle to its surface. It has long been recognised that lithospheric thickness limits the rise height of plumes and, thereby, their minimum melting pressure. It should, therefore, have a controlling influence on the geochemistry of plume-related magmas, although unambiguous evidence of this has, thus far, been lacking. Here we integrate observational constraints from surface geology, geochronology, plate-motion reconstructions, geochemistry and seismology to ascertain plume melting depths beneath Earth's longest continental hotspot-track, a ~2000 km long track in eastern Australia that displays a record of volcanic activity between ~33 and ~9 Ma, which we call the Cosgrove track. Our analyses highlight a strong correlation between lithospheric thickness and magma composition along this track, with: (i) standard basaltic compositions in regions where lithospheric thickness is less than ~110 km; (ii) volcanic gaps in regions where lithospheric thickness exceeds ~150 km; and (iii) low-volume, leucitite-bearing volcanism in regions of intermediate lithospheric thickness. Trace-element concentrations from samples along this track support the notion that these compositional variations result from different degrees of partial-melting, which is controlled by the thickness of overlying lithosphere. Our results place the first observational constraints on the subcontinental melting depth of mantle plumes and provide direct evidence that lithospheric thickness has a dominant influence on the volume and chemical composition of plume-derived magmas.