SH53A-2478
Particle Acceleration Affected by the Evolving Velocity Structures in the Solar Wind

Friday, 18 December 2015
Poster Hall (Moscone South)
Ken Tsubouchi, Tokyo Institute of Technology, Tokyo, Japan
Abstract:
It is accepted that high-energy particles are efficiently generated during their crossing of shocks in space, where the diffusive shock acceleration is the most standard process to explain the observed energy spectrum beyond the order of a gigaelectronvolt. In contrast, recent spacecraft observations have shown different characteristics in a lower energy range (a kilo- to megaelectronvolt): particles in the heliosphere have a power-law spectrum in particle speed with a spectral index of -5, which is commonly found in any solar wind conditions. This is a puzzling result that the shocks are not a necessary element responsible for accelerating particles. The alternative mechanism, a pump acceleration, is proposed where particles are accelerated in a region containing large-scale compressions and expansions (e.g., Fisk and Gloeckler, JGR 2014). In the present study, we elucidate the validity of this mechanism by performing hybrid simulations to investigate the particle, particularly pickup ions, dynamics in various situations of non-uniform velocity field, such as a simple fast/slow flow interaction, sinusoidal structures, or random profiles, and to compare the velocity spectrum of suprathermal particles in each case. We also study the scale dependence of acceleration processes by comparing the spectrum of the energetic H+, He+, and O+.