T21B-2820
High Tibetan Plateau: a Nature Reserve of C3 Flora

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Guangsheng Zhuang1, Mark Pagani2 and Mark T Brandon2, (1)Louisiana State University, Geology and Geophysics, Baton Rouge, LA, United States, (2)Yale University, New Haven, CT, United States
Abstract:
Uplift of the Tibetan Plateau and associated climate changes leading to enhanced seasonality in precipitation and drying, are argued to have induced a global ecological shift from C3-frorest to C4-grassland between 8 and 5 million years ago. However, both tectonic and climatic changes predate the timing of the C3-C4 transition, with paleoaltimetry studies pointing to a high Tibetan Plateau no later than 10 Ma and the existence of an intense monsoon since ca. 11 Ma.

To better understand the role of the Tibetan Plateau, we present results of a paleoecology study based on the carbon isotope compositions of leaf-wax n-alkanes (δ13Calk) from Qaidam basin, an intermontane basin on the youngest and the northernmost portion of Tibetan Plateau. Samples were collected from a 5-km thick, fluvial-lacustrine sequence dated 15 Ma to 1.8 Ma. Organic geochemical indices and detrital thermochronological studies preclude post-depositional thermal alteration of the studied materials.

Our results, which show persistently low δ13Calk values, are consistent with the dominance of C3 flora on the Tibetan Plateau, in contrast to the prominent C4 rise surrounding the Tibetan Plateau and around the globe. We argue that a high Tibetan Plateau, established prior to the global ecological C3-C4 shift, served as a shelter of C3 flora since the Miocene. High-elevation and cold environments provided a competitive advantage for C3 by damping/counteracting the physiological advantage of C4 which outperforms C3 plants under warm, high-irradiance, water-stress and low pCO2 conditions.