T11H-05
Frictional properties of the biogenic oozes from the CRISP drilling project: possible evidence of past slip-to-the-trench

Monday, 14 December 2015: 09:00
304 (Moscone South)
Paola Vannucchi, Royal Holloway University of London, Egham, TW20, United Kingdom
Abstract:
The 2011 Tohoku EQ revealed that co-seismic displacement along the megathrust can reach the deformation front of subduction zones. Since then the global significance of slip-to-the-trench has become an important field of study; hence investigation of past events at other active megathrusts is critical. Offshore SE Costa Rica the deformation front of the Caribbean forearc is formed by a ~10 km-wide accretionary wedge. Here, drill Site U141 has revealed a record of frontal thrusts detached along biogenic ooze, which correlates lithologically with the “reference” Site U1381. This biogenic ooze contains >70% of organic components.There are up to 15% silica-rich elements in the upper part of the formation, while clay increases downsection. The biogenic ooze is overlain by silty clay, in which smectite is the dominant mineral.

Low- to high-velocity friction experiments were performed on the biogenic ooze and the silty clay to investigate the velocity dependence of friction and the micromechanical foundation of strain localization within fontal thrusts. These experiments were performed at slip-rates of 3 µms−1 to 3.5 ms−1and σn up to 12 MPa, under both room-humidity and water saturated conditions. These experimental results indicate that, at low slip-rates, the biogenic ooze is stronger than the silty clay. At increasing slip-rates silty clays have a positive dependence of friction, while biogenic oozes show a sharp decrease of their friction coefficient as slip-rate increases. This rate-weakening behavior of the biogenic oozes may enhance co-seismic slip along the megathrust. The implication of these mechanical measurements is that the geological structures found in the forearc toe offshore SE Costa Rica were formed by locally high slip-rates that have enhanced slip propagation to the trench. Under slow slip-rates, deformation can have localized easier by creeping within the clays than in the oozes as seen.

As Tsunami earthquakes are known to form with pronounced slip-to-the trench, the presence of biogenic oozes could be an indicator for past and potential tsunamigenic events. If so, this would be the case for the MAT from Guatemala to Costa Rica where similar biogenic ooze is found at all drill sites. Specifically, biogenic ooze may have formed the slip surface of the 1992 Nicaragua tsunami EQ. This needs to be tested.