V51F-3090
Pyrrhotite Oxidation as an Indicator of Air Entrainment into Eruption Columns

Friday, 18 December 2015
Poster Hall (Moscone South)
Keiko Matsumoto and Michihiko Nakamura, Tohoku University, Sendai, Japan
Abstract:
Fragmented magmas in eruption columns obtain buoyancy by entrainment and heating of cold air. Theoretically, the proportion of the entrained air and temperature change of the magma fragments can be calculated through rigorous fluid dynamics, but these factors have not been evaluated from natural pyroclasts. In this study, we developed a new method for quantifying the degree of air entrainment based on pyrrhotite (Po) oxidation reactions, whose time scale corresponds to the typical duration of (sub-) Plinian eruptions (i.e., tens of seconds to a few hours). We examined pumice clasts and lava flows from the 1914–15 eruption of Sakurajima. During this event, various types of eruption were observed: Plinian eruptions with intermittent generation of clastogenic lava flow, followed by voluminous effusive lava flow.

The products of Po oxidation consisted of magnetite (Mt), hematite (Hm), and their composites. The occurrence of Po and the oxides were systematically correlated with the types of eruption. In Plinian pumices, unreacted Po ± porous Mt-Hm composite reaction rims were dominant, whereas in the clastogenic lava, porous Hm occurred predominantly with scarce unreacted Po and porous Mt. In the effusive lava, a variety of Po, Mt, and Hm assemblage was observed, but Po did not coexist with Hm-rims. The porous Mt crystals in the pumice clasts were found to be Ti-free, whereas those in the effusive lava had Ti-enriched rims. These correlations were explained by considering two factors: the achieved fO2, which was controlled by the extent of fragmentation (i.e., surface area exposed to air), and duration of the maintenance of a high-T and high-fO2 condition. This study has demonstrated that the cooling timescale of pumice clasts in eruption columns can be estimated through the rate of Po oxidation reactions Po→Mt and Mt→Hm. Lavas of clastogenic origin may also be recognized from the reaction.