B33A-0636
Influence of Different Environmental Variables on Energy and Carbon Fluxes in a Mediterranean Maquis Site

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Veronica Bellucco1, Serena Marras2, Costantino Sirca2, Pierpaolo Duce3 and Donatella Spano1, (1)University of Sassari, Sassari, Italy, (2)University of Sassari; CMCC, Sassari, Italy, (3)CNR-Ibimet, Sassari, Italy
Abstract:
Recent studies show that, in the Mediterranean area, global climate changes are likely causing an increase in frequency and intensity of drought periods as well as in the number of warmer days and nights. Mediterranean maquis (schlerophyll species) is a typical evergreen ecosystem consisting of short shrubs with leathery leaves sparsely distributed. It is adapted to live in a semi-arid climate as that of Mediterranean coasts and can survive to these environmental stress condition, being able to recover after autumn rainfall. However, increased environmental stress condition may determine changes in vegetation behavior in the long period.

The aim of this study is to show the seasonal variability of sensible and latent heat, and CO2 exchanges measured, with the Eddy Covariance (EC) technique, over a Mediterranean Maquis site. It is located, about 600 m far from the sea, in the Capo Caccia peninsula (municipal district of Alghero (SS), Italy) within a natural reserve called “Le Prigionette”, also known as Arca di Noé, in the North-West Sardinia coast (40.61° N, 8.15° E, 74 m asl). Due to this proximity of the EC tower to the sea, the ecosystem vertical exchanges and their footprint may be differently affected by sea and land breeze during days and nights, respectively. A four-component net radiometer, a quantum sensor, and a meteorological station were also set up for ancillary measurements as well as four heat plates in four different positions to account for under canopy and bare soil conditions in the Maquis ecosystem. Therefore, the influence of different environmental variables, such as soil/air temperature, atmospheric conditions and soil moisture content, on energy and carbon fluxes will be investigated and their effect on the seasonal and inter-annual variability of surface fluxes will be analyzed.