PP43C-2290
Late Oligocene glacimarine sedimentation of the central Ross Sea and implications for the evolution of the West Antarctic Ice Sheet

Thursday, 17 December 2015
Poster Hall (Moscone South)
Christoph Kraus1, Robert M Mckay1, Tim Naish1, Richard H Levy2 and Denise K Kulhanek3, (1)Victoria University of Wellington, Wellington, New Zealand, (2)GNS Science, Lower Hutt, New Zealand, (3)Integrated Ocean Drilling Program, College Station, TX, United States
Abstract:
Today the West Antarctic Ice Sheet (WAIS) is grounded mostly below sea level, making it sensitive to oceanic temperature and circulation changes. However, recent reconstructions of the Cenozoic bedrock topographic evolution of West Antarctica have suggested that the West Antarctic Ice Sheet (WAIS) may have first formed as a terrestrial ice sheet at the Eocene-Oligocene boundary (33 Ma), when there was up to 20% more land area in West Antarctica. At some point during the Oligocene or Miocene (23 - 5 Ma) vast areas of West Antarctica became an over-deepened marine-based continental shelf, as is observed today. The evolution of the WAIS through this transition is largely unconstrained, but as atmospheric CO2 fluctuated between 600 and 200 ppm over the past 34 Ma, determining the development of a marine-based WAIS is critical in the context of understanding the sensitivity of ice sheet systems to environmental change. Our research re-examines the sediment cores recovered from the central Ross Sea, a principal drainage area of the WAIS, at Deep Sea Drilling Project Site 270 (77°26.48’S, 178°30.19’W). These cores contain a glacimarine sequence of late Oligocene age (28 - 23.1 Ma). Sedimentological (visual core description, facies, grain size analysis), geochemical (x-ray fluorescence), geophysical (seismic) techniques, and physical properties (magnetic susceptibility) are used to construct a sedimentation model of this sequence, in order to track the late Oligocene evolution of the WAIS. The late Oligocene warming (25 - 23 Ma) is examined in detail because proximal Antarctic geological records of ice sheet extent, proxy environmental data, and atmospheric CO2 appear to be at odds with the composite δ18O record of global temperature and ice volume at this time. Moreover, our research provides insights into the sensitivity of marine-based ice sheets, and supports the hypothesis that they are unstable above a CO2 threshold of 400 ppm. Our preliminary results also indicate that the WAIS may have been responsive to orbital forcing during the late Oligocene.