V53E-3158
Isotopic Evidence for Microbial Activity in Crystalline Bedrock Fractures – a Case Study from Olkiluoto, SW Finland

Friday, 18 December 2015
Poster Hall (Moscone South)
Elina Kyllikki Sahlstedt, University of Helsinki, Helsinki, Finland, Juha Karhu, Univ Helsinki, Helsinki, Finland and Petteri Pitkänen, Posiva Oy, Eurajoki, Finland
Abstract:
Changes in the geochemical environment in crystalline bedrock fractures were investigated using the stable isotopes of C, O and S in fracture filling minerals as tracers. Of special interest were the possible changes which may occur in the subsurface at low temperatures. Especially, the influence of microbial activity was recognized as a catalyst for inducing changes in the geochemical environment. The study site is the Olkiluoto island located on the western coast of Finland, planned to host a geological repository for nuclear waste.

Fracture surfaces were investigated to recognize the latest mineralizations at the site. These fillings were comprised of thin plates or small euhedral crystals of calcite and pyrite. The carbon and sulfur isotope compositions of calcite and pyrite were measured from bulk material by conventional IRMS, and in situ by secondary ion mass spectrometry. A notable feature of the late-stage fillings was high variabilities in the δ13C values of calcite and the δ34S values of pyrite, which ranged from -53.8 ‰ to +31.6 ‰ and from -50.4 ‰ to +77.7 ‰, respectively. Based on the isotopic compositions of the fillings, several features in the past hydrogeochemical environment could be recognized. The isotopic composition of the fracture fillings indicate an environment which was stratified with respect to depth. Characteristic features include bacterial sulfate reduction (BSR) occurring at depths <111 m (bsl), and a methanogenetic environment at depths >50 m. It appears that methanic conditions were replaced by sulfate reduction at depths >50 m likely due to infiltration of SO42--rich brackish waters. Sulfate reducing bacteria used mainly surface derived organic carbon as electron donors. Some indication of minor methanotrophic activity was recognized in anomalously low δ13C values of calcite, down to -53.8 ‰, at the depth range of 34-54 m. This methanotrophic activity may have been related to bacteria using CH4 as an electron donor in BSR.