T41C-2906
Grain Boundary and Interface Phenomena in Deformed Rocks – Implications for Creep Processes

Thursday, 17 December 2015
Poster Hall (Moscone South)
Joseph Clancy White, University of New Brunswick, Fredericton, NB, Canada
Abstract:
The scaling of ductile rheology within the lithospheric crust can be examined as the progressive aggregation of point and line defect motion and interaction that culminates in the cooperative behavior of grain boundaries and like interfaces. Even though the role of interfaces in mediating defect motion, and in turn macroscopic ductility, is well recognized, many details of interface structure and function remain unresolved. As a contribution to the latter, grain boundary phenomena studied by transmission electron microscopy are described from different pressure-temperature conditions (greenschist to granulite grade) in concert with the macroscopic deformation response. In generally, the interfaces have important differences from classic models based on metals and simple non-metals. The combination of crystal-chemical complexity and compositional heterogeneity of crustal materials is reflected in grain boundary features that include classic coincident-boundary types, grain boundary ledges, finite width interfaces, grain boundary cavitation, dislocation-diffusion metamorphic effects and intra-/ intercrystalline defect interactions. The need to establish the range of interface phenomena is seen in the fact that grain boundary activity is the primary factor in grain-size sensitive (GSS) flow where grain size is in effect an easily observable proxy for the fractional grain boundary area (volume) of the material.