C21F-08
Use of a new ultra-long-range terrestrial LiDAR system to monitor the mass balance of very small glaciers in the Swiss Alps

Tuesday, 15 December 2015: 09:45
3009 (Moscone West)
Mauro Fischer1, Matthias Huss2 and Martin Hoelzle1, (1)Department of Geosciences, University of Fribourg, Fribourg, Switzerland, (2)University of Fribourg, Fribourg, Switzerland
Abstract:
Measuring glacier mass balance is important as it directly reflects the climatic forcing on the glacier surface. Today, repeated comparison of digital elevation models (DEMs) is a popular and widely used approach to derive surface elevation, volume and mass changes for a large number of glaciers. In high-mountain environments, airborne laser scanning (ALS) techniques currently provide the most accurate and highest resolution DEMs on the catchment scale, allowing the computation of glacier changes on an annual or even semi-annual basis. For monitoring individual glaciers though, terrestrial laser scanning (TLS) is easier and more cost-efficiently applied on the seasonal timescale compared to ALS. Since most recently, the application of the latest generation of ultra-long-range near infrared TLS systems allows the acquisition of surface elevation information over snow and ice of unprecedented quality and over larger zones than with previous near infrared TLS devices.

Although very small glaciers represent the majority in number in most mountain ranges on Earth, their response to climatic changes is still not fully understood and field measurements are sparse. Therefore, a programme was set up in 2012 to monitor both the seasonal and annual surface mass balance of six very small glaciers across the Swiss Alps using the direct glaciological method. As often nearly the entire surface is visible from one single location, TLS is a highly promising technique to generate repeated high-resolution DEMs as well as to derive seasonal geodetic mass balances of very small ice masses.

In this study, we present seasonal surface elevation, volume and geodetic mass changes for five very small glaciers in Switzerland (Glacier de Prapio, Glacier du Sex Rouge, St. Annafirn, Schwarzbachfirn and Pizolgletscher) derived from the comparison of seasonally repeated high-resolution DEMs acquired since autumn 2013 with the new ultra-long-range TLS device Riegl VZ-6000. We show the different processing steps necessary to derive geodetic glacier changes from the raw data (the TLS point clouds), comment on the accuracy of our results and compare them to very dense in-situ measurements, and thus investigate the potential of our approach to circumvent laborious and time consuming glaciological mass balance measurements of very small glaciers.