B51E-0472
The Potential Impact of Increased Phosphorus Loads in Lakes Acting as Heavy Metal Reservoirs: A case study from west-central Indiana
Abstract:
Green Valley Lake is a designated state fishing area in west-central Indiana. Prior to this designation, the lake was a water supply reservoir for the adjacent and now abandoned Green Valley Coal Mine (Operating from 1948-1963). The Green Valley Coal Mine property continues to produce excess acidity despite reclamation efforts. The former mine property and the lake are connected by a channel that discharges acidic drainage directly into Green Valley Lake. To evaluate temporal variability in metal and phosphorus (P) geochemistry, two short cores were collected in spring 2014 (38cm) and spring 2015 (39cm). Metal concentrations were determined by a hand-held X-ray fluorescence analyzer after the samples had been dried and crushed. Approximately 20% of these metal concentrations will be verified by ICP-OES following extraction in 50% aqua regia. Detailed P geochemistry was determined using a sequential extraction technique (SEDEX).The sediments in Green Valley Lake are characterized by heavy metal concentrations that are elevated above typical background levels. These metals tend to be concentrated near the sediment water interface, often 3-5 times greater than the average concentration for the rest of the core, which suggests that they are diagenetically mobile and possibly diffusing out of the sediments under dysoxic to anoxic conditions and returning to the sediments under oxic conditions. Total sedimentary P averages 57 umol/g, but oscillates between 20 - 110 umol/g. The most dramatic shift in the detailed P geochemistry is the significant reduction of mineral P at 15 cm and the increasing importance of oxide-associated and adsorbed P upcore. Diatom assemblages suggest that the lake has become increasingly more eutrophic over time. As nutrient loads continue to increase, the oxygen depleted zone may expand impacting fish populations and changing water geochemistry significantly, in particular, mobilizing heavy metals.