H43I-1665
Identifying Landscape Areas Prone to Generating Storm Runoff in Central New York Agricultural Fields
Thursday, 17 December 2015
Poster Hall (Moscone South)
Kathryn Hofmeister and Michael Todd Walter, Cornell University, Ithaca, NY, United States
Abstract:
Nonpoint source (NPS) pollution continues to be a leading cause of surface water degradation, especially in agricultural areas. In humid regions where variable source area (VSA) hydrology dominates storm runoff, NPS pollution is generated where VSAs coincide with polluting activities. Mapping storm runoff risks could allow for more precise and informed targeting of NPS pollution mitigation practices in agricultural landscapes. Topographic wetness indices (TWI) provide good approximations of relative soil moisture patterns and relative storm runoff risks. Simulation models are typically used in conjunction with TWIs to quantify VSA behavior. In this study we use empirically derived relationships between TWI values, volumetric water content (VWC) and rainfall frequencies to develop runoff probability maps. Rainfall and soil VWC were measured across regionally representative agricultural areas in central New York over three years (2012-2015) to determine the volume of runoff generated from agricultural fields in the area. We assumed the threshold for storm runoff occurs when the combination of antecedent soil water and rainfall are sufficient to saturate the soil. We determined that approximately 50% of the storm runoff volume is generated from 10% of the land area during spring, summer, and autumn seasons, while the risk of storm runoff generation is higher in the spring and autumn seasons than in the summer for the same area of land.