C33C-0824
Multi-instrument Method to Map Spatial and Temporal Patterns of Snowmelt Infiltration
Wednesday, 16 December 2015
Poster Hall (Moscone South)
Kevin Hyde, Organization Not Listed, Washington, DC, United States
Abstract:
Mapping spatial patterns of relative soil moisture over time may improve understanding of snowmelt infiltration processes in heterogeneous systems. Conventional soil water measurement methods disturb soil properties and rocky materials generally limit installation of monitoring instruments to shallow depths in mountainous landscapes with snowmelt dominated hydrology. Modifications to existing technology combined with low impact installation methods provide high temporal and spatial resolution of relative soil moisture as well as a temperature profile and water table level. Closely spaced (10cm) electrical resistance pads are combined in a small diameter (2.54 cm) tube with temperature probes each 50cm, a pressure transducer, and a tube to extract groundwater for stable isotope analysis. This vertical probe array (VPA) extends 3.2m and is installed in a small diameter (4 cm) bore using a backpack drill limiting soil disturbance. Two VPAs are installed in the Snowy Range of Wyoming, one in a forested mountainous environment impacted by mortality by insects and disease and the other (limited to resistance pads only) in recently burned sagelands. Each VPA is co-located with meteorological stations. Eddy-covariance, sap flux, electrical resistivity, snowpack survey, and other hillslope eco-hydrology measurements accompany the fully instrumented VPA. Data are sampled and recorded at 5 or 15 minute intervals starting in December 2014. Over the winter both sites exhibit highly variable patterns of relatively dry soils with steady increase in wetness. Abrupt increases in relative wetness occurred with short periods of warming temperatures in Spring. Following a temperature increase in the forested site the relative moisture dramatically increased over a period of several hours at all depths as water level rose 1m within 8 hours. In contrast, following snowmelt relative moisture in the sageland site increased gradually and systematically with depth over a period of two weeks. The sage area also demonstrates sensitivity to rainfall events where the forested hillslope is insensitive to rain inputs. Long term monitoring at high temporal frequency will likely reveal other patterns expected to advance understanding of snowmelt infiltration processes at previously inaccessible depths within the vadose zone.