P51A-2043
Tholins as Coloring Agents on Pluto

Friday, 18 December 2015
Poster Hall (Moscone South)
Dale P Cruikshank, NASA Ames Research Center, Moffett Field, CA, United States
Abstract:
The shape of the reflectance spectrum of Pluto recorded with telescopes, 0.3-1.0 μm, shows the planet's yellow-red color (1). Additionally, multi-filter images of Pluto with the MVIC camera on the New Horizons spacecraft report concentrations of the coloring agent(s) in some regions of the surface, and apparent near absence in other regions. Tholins are refractory organic solids of complex structure and high molecular weight, with a wide range of color ranging from yellow and orange to dark red, and through tan to black. They are readily synthesized in the laboratory by energetic processing of mixtures of the ices (N2, CH4, CO) known on Pluto's surface (2), or the same molecules in the gas phase (3). Energy in the form of UV light, electrons, protons, or coronal discharge are all effective to one degree or another in producing various types of tholins; details of the composition and yield vary with experimental conditions. Chemical analysis of ice tholins shows carboxylic acids, urea, and HCN and other nitriles. Aromatic/olefinic, amide, and other functional groups are identified in XANES analysis (4). The ice tholins produce by e- irradiation have a higher concentration of N than UV ice tholins, with N/C ~0.9 (versus ~0.5 for UV tholins) and O/C~0.2. EUV photolysis of Pluto atmosphere analog yields pale yellow solids relatively transparent in the visual, and with aliphatic CH bonds prominent in IR spectra. This material may be responsible for Pluto's hazes (5). Various tholins are the principal coloring agents on Pluto's surface, probably Charon's colored region, and on numerous other outer Solar System bodies (6). Refs: 1. Cruikshank, D. P. et al. 2014 DPS abstract #419.04; 2. Cruikshank et al. 2015 Icarus 246, 82; 3. Krasnopolsky & Cruikshank 1999 JGR 104 E9, 21,979; 4. Materese, C. K. et al. 2014 Ap.J. 788:111, June 20; 5. Imanaka, H. et al. 2014 DPS abstract #419.10; 6. Cruikshank, D. P. et al. 2005 Adv. Space Res. 36, 178.