T43B-2999
Dating High Temperature Mineral Fabrics in Lower Crustal Granulite Facies Rocks

Thursday, 17 December 2015
Poster Hall (Moscone South)
Harold H Stowell1, Joshua J Schwartz2, Andrew J Tulloch3, Keith Andrew Klepeis4, Karen Odom Parker1, Michael Palin5 and Jahandar Ramezani6, (1)University of Alabama, Tuscaloosa, AL, United States, (2)CSU Northridge-Geological Sci, Northridge, CA, United States, (3)GNS Science, Dnedin, New Zealand, (4)University of Vermont, Burlington, VT, United States, (5)University of Otago, Dunedin, New Zealand, (6)MIT-EAPS, Cambridge, MA, United States
Abstract:
Granulite facies rocks may record strain that provides a record of compressional and/or extensional crustal events in hot orogenic cores and the roots of magmatic arcs. Although the precise timing of these events is important for constructing tectonic histories, it is often difficult to determine due to uncertain relationships between isotopic signatures, mineral growth, and textural features that record strain. In addition, there may be large uncertainties in isotope data due to intracrystalline diffusion and multiple crystallization events. L-S tectonites in lower crustal rocks from Fiordland, NZ record the early stages of extensional collapse of thickened magmatic arc crust. The precise age of these fabrics is important for constraining the timing of extension that led to opening of the Tasman Sea. High temperature granulite facies L-S fabrics in garnet reaction zones (GRZ) border syn- to post-deformational leucosomes. U-Pb zircon, Lu-Hf garnet, and Sm-Nd garnet ages, and trace elements in these phases indicate the complexity of assigning precise and useful ages. Zircon have soccer ball morphology with patchy and sector zoned CL. Zircon dates for igneous host and adjacent GRZ range over ca. 17 Ma. 236U-208Pb LA-ICP-MS are 108-125 Ma, N=124 (host & GRZ); however, chemical abrasion (CA) shifts GRZ dates ca. 2 Ma older. 236U-208Pb SHRIMP-RG dates cluster in 2 groups: 118.5±0.8 Ma, N=23 and 111.0±0.8 Ma, N=6. CA single crystal TIMS dates also fall into 2 groups: 117.6±0.1 Ma, N=4 and 116.6±0.2 Ma N=4. Garnet isochron ages determined from coarse garnet selvages adjacent to leucosomes range from 112.8±2.2 (147Sm-143Nd, 10 pts.) to 114.8±3.5 (177Lu-176Hf, 6 pts.) Ma. Zircon dates from all methods show ranges (>10 Ma) and 2 distinct populations. Host and GRZ zircon cannot be readily distinguished by age, lack younger rims, but have distinct Th/U trends and Eu/Eu* vs. Hf ratios. Difference in zircon trace element composition indicates either early leucosome emplacement or xenocrystic zircon in leucosomes. We conclude that the small number of oldest zircon grains are inherited, older zircon age populations (CA LA-ICP-MS, SHRIMP-RG and TIMS) are near identical ca. 118 Ma and date intrusion, and that the youngest zircon and indistinguishable garnet ages (113-116 Ma) date syn-deformational granulite facies metamorphism.