H11D-1371
Parameter Identification and Uncertainty Analysis for Visual MODFLOW based Groundwater Flow Model in a Small River Basin, Eastern India
Monday, 14 December 2015
Poster Hall (Moscone South)
Suraj Jena, Ph.D. Scholar, School of Earth, Ocean and Climate Sciences, Bhubaneswar, India
Abstract:
The overexploitation of groundwater resulted in abandoning many shallow tube wells in the river Basin in Eastern India. For the sustainability of groundwater resources, basin-scale modelling of groundwater flow is essential for the efficient planning and management of the water resources. The main intent of this study is to develope a 3-D groundwater flow model of the study basin using the Visual MODFLOW package and successfully calibrate and validate it using 17 years of observed data. The sensitivity analysis was carried out to quantify the susceptibility of aquifer system to the river bank seepage, recharge from rainfall and agriculture practices, horizontal and vertical hydraulic conductivities, and specific yield. To quantify the impact of parameter uncertainties, Sequential Uncertainty Fitting Algorithm (SUFI-2) and Markov chain Monte Carlo (MCMC) techniques were implemented. Results from the two techniques were compared and the advantages and disadvantages were analysed. Nash–Sutcliffe coefficient (NSE) and coefficient of determination (R2) were adopted as two criteria during calibration and validation of the developed model. NSE and R2 values of groundwater flow model for calibration and validation periods were in acceptable range. Also, the MCMC technique was able to provide more reasonable results than SUFI-2. The calibrated and validated model will be useful to identify the aquifer properties, analyse the groundwater flow dynamics and the change in groundwater levels in future forecasts.