GC13A-1130
Estimating relationships among water use, nitrogen uptake and biomass production in a short-rotation woody crop plantation

Monday, 14 December 2015
Poster Hall (Moscone South)
Ying Ouyang, USDA Forest Service-CBHR, Mississippi State, MS, United States
Abstract:
Short-rotation woody crop has been identified as one of the best feedstocks for bioenergy production due to their fast-growth rates. However, the biomass production, nutrient uptake, and water use efficiency under adverse environmental condition are still poorly understood. In this study, a computer model was developed to undertake these issues using STELLA (Structural Thinking and Experiential Learning Laboratory with Animation) software. Two simulation scenarios were employed: one was to quantify the mechanisms of water use, nitrogen uptake and biomass production in a eucalypt plantation under the normal soil conditions, the other was to estimate the same mechanisms under the wet and dry soil conditions. In general, the rates of evaporation, transpiration, evapotranspiration (ET), and root water uptake were in the following order: ET > root uptake > leaf transpiration > soil evaporation. A profound discrepancy in water use was observed between the wet and dry soil conditions. Leaching of nitrate-N and soluble organic N depended not only on soil N content but also on rainfall rate and duration. The yield of biomass from the eucalypt was primarily regulated by water availability in a fertilized plantation.