S33B-2769
Prompt Earthquake Detection based on Transient Gravity Signals.

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Kévin Juhel, Institut de Physique du Globe de Paris, Paris, France
Abstract:
The deformation caused by an earthquake induces changes in the Earth’s gravitational field known as coseismic gravity changes, especially during mega-earthquakes. So far, only static gravity changes have been detected, considerably after the end of the rupture. Since gravity changes propagate at the speed of light, a dynamic gravity signal is produced everywhere on Earth during the rupture, even before the arrival of seismic waves.

Here we confirm the evidence of this prompt gravity signal. We have analyzed, with a statistical blind method, the data recorded during the 2011 Mw 9.0 Tohoku-oki earthquake by a superconducting gravimeter in the underground Kamioka observatory, about 500 km away from the earthquake centroid. We find that a gravity signal is present before the P wave arrival, with a statistical significance of more than 99%. The signal amplitude is a fraction of μGal, consistent in sign and order-of-magnitude with theoretical predictions. A similar analysis is being conducted on data recorded by the broadband seismometers of the japanese network Fnet.

Numerical simulations based on normal-mode method and an analytical model of dynamic gravity signals are used to compute synthetic seismograms, and thus characterize the prompt gravity signal.

The robust detection of this prompt gravity signal with instruments more immune to the background seismic noise could, in principle, open new directions in earthquake seismology and overcome limitations of current earthquake early-warning systems imposed by the propagation speed of seismic waves.