H13C-1539
Incorporating Information on (micro)Topography when Modelling Soil Erosion at the Watershed Scale

Monday, 14 December 2015
Poster Hall (Moscone South)
Olivier Cerdan, Organization Not Listed, Washington, DC, United States; BRGM, DRP/RIG, Orleans, France
Abstract:
In the context of shallow flows, the spatial distribution of the flow is highly influenced by the micro-topography. For instance, local oriented depressions may exist in which the flow depth and velocity may exceed the threshold for soil erosion initiation. If a mean uniform flow shear stress is used to characterize the area, it would be smaller and therefore may not initiate erosion. However, management of water and sediment fluxes requires analysis and modeling at the watershed scale in order to integrate the relations between upstream and downstream areas. At this scale, high resolution information on the microtopography is usually not always available and would anyway require too extensive computation resources to be explicitly integrated in modelling attempt. Moreover, in agricultural context, this information is likely to change during the year depending on the agricultural practices. In this context, the objective of this study is to propose a parameterisation of the influence of microtopography on erosion into the framework of the shallow water equation. For each cell, the proportion of wetted area is used as a microtopography indicator. For the case of erosion, the system is coupled to the sediment transport equations. In such context, an additional equation describing the micro-topography evolution caused by erosion is introduced. Different case study will be presented to investigate the potential of the approach.