IN21A-1682
Quality Assessment of Collection 6 MODIS Atmospheric Science Products

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Vani Starry Manoharan1, Bill Ridgway1, Steven E Platnick2, Sadashiva Devadiga1 and Edward Mauoka2, (1)Science Systems and Applications, Inc., Lanham, MD, United States, (2)NASA Goddard Space Flight Center, Greenbelt, MD, United States
Abstract:
Since the launch of the NASA Terra and Aqua satellites in December 1999 and May 2002, respectively, atmosphere and land data acquired by the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor on-board these satellites have been reprocessed five times at the MODAPS (MODIS Adaptive Processing System) located at NASA GSFC. The global land and atmosphere products use science algorithms developed by the NASA MODIS science team investigators. MODAPS completed Collection 6 reprocessing of MODIS Atmosphere science data products in April 2015 and is currently generating the Collection 6 products using the latest version of the science algorithms. This reprocessing has generated one of the longest time series of consistent data records for understanding cloud, aerosol, and other constituents in the earth’s atmosphere. It is important to carefully evaluate and assess the quality of this data and remove any artifacts to maintain a useful climate data record. Quality Assessment (QA) is an integral part of the processing chain at MODAPS. This presentation will describe the QA approaches and tools adopted by the MODIS Land/Atmosphere Operational Product Evaluation (LDOPE) team to assess the quality of MODIS operational Atmospheric products produced at MODAPS. Some of the tools include global high resolution images, time series analysis and statistical QA metrics. The new high resolution global browse images with pan and zoom have provided the ability to perform QA of products in real time through synoptic QA on the web. This global browse generation has been useful in identifying production error, data loss, and data quality issues from calibration error, geolocation error and algorithm performance. A time series analysis for various science datasets in the Level-3 monthly product was recently developed for assessing any long term drifts in the data arising from instrument errors or other artifacts. This presentation will describe and discuss some test cases from the recently processed C6 products. We will also describe the various tools and approaches developed to verify and assess the algorithm changes implemented by the science team to address known issues in the products and improve the quality of the products.