T51F-2968
From Rifting of a volcanic province to Oceanic Spreading in the Andaman Sea, South-East Asia.

Friday, 18 December 2015
Poster Hall (Moscone South)
Aurelie Jourdain, Satish Chandra Singh and Yann Klinger, Institut de Physique du Globe de Paris, Paris, France
Abstract:
The Andaman Sea is an enigmatic feature in the Indian Ocean region. It contains the volcanic provinces of Alcock and Sewell Rises and an active spreading center. The recent rifting in the Andaman Sea initiated 4.5 Ma ago, rifting the Alcock and Seawell Rises that were formed by extensive volcanism between 23-16 Ma. The spreading started with a full spreading rate of 1.6 cm/yr and increased to 3.8 cm/yr in the last 2.5 Ma.

We have access to high-resolution deep seismic reflection data crossing the whole spreading center from the rifted volcanic provinces to the spreading center. The data show the whole oceanic crust up to the Moho. The Andaman Sea is covered with a thick pile of sediments that record the tectonic history of the rift system up to the spreading axis, allowing to decipher the whole process from rifting to spreading for the first time. We see a very rapid phase of transition from the rifting of the rises to the spreading in less than 20 km. Then a succession of at least 7 half-grabens is well recorded by the sediments on both sides of the spreading center. These half grabens are separated by outward tilted low angle detachment faults, which form the base of steeply dipping normal faults due to stretching. These low angle faults seem to connect with axial magma chambers that control evolution of the rift valley. We find that new detachment faults develop every 350,000 years, forming a new rift valley. The images of active normal faults within the central rift valley allow us to quantify the formation of oceanic crust by tectonic versus magmatic processes.