G21C-05
Detectability of slow slip beneath the seismogenic zone of strike-slip faults using borehole tiltmeters
Abstract:
During the last decades, geodetic tools like C-GPS allowed the detection of slow slip events associated with transient motion below the seismogenic zone. This new class of fault motion lead us to revise the standard version of the seismic cycle simply including coseismic, postseismic and interseismic phases. Most of these discoveries occurred on subduction margins in various places like Japan, Cascadia, Chile and Indonesia. By contrast, GPS and strainmeters have provided little evidence of slow slip beneath the seismogenic zone of large continental faults like the San Andreas fault or the North Anatolian fault. Because the detectability of such motions is mostly tributary from instrumental precision, we examine the theoretical capability of tiltmeter arrays for detecting horizontal motion of a buried vertical fault.We define the slipping part of the strike-slip fault like a buried rectangular patch submitted to horizontal motion. This motion provides horizontal and vertical surface deformation as a function of both patch geometry (length, width, depth) and motion amplitude. Using a dislocation buried at 15km depth, we compute the maximum motion and tilt as a function of seismic moment. Assuming yields of detectability of 1mm for GPS horizontal motion and 10 nrad for a tiltmeter, we show that small slip events could be better detected using high resolution and stability tiltmeters. We then examine how tiltmeters arrays could be used for such a purpose. In particular, we discuss how to deal with usual problems often plaguing tiltmeters data like instrumental drift, borehole coupling and hydrological strain.