V21A-3033
A New Look at the Bathymetric and Potential-Field Structure of the Cayman Trough via CaySEIS

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Nicholas W Hayman1, Jennifer Harding1, Harm J Van Avendonk1, Christine Peirce2, Ingo Grevemeyer3, Anke Dannowski3 and Cord A Papenberg3, (1)University of Texas, Institute for Geophysics, Austin, TX, United States, (2)University of Durham, Durham, DH1, United Kingdom, (3)GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Abstract:
The Cayman Trough (CT) has one of the world’s deepest axial valleys, thinnest crust, end-member basalt composition, and slowest spreading rate. Accommodating motion between the North American and Caribbean plates, and the Gonave microplate, marine magnetic anomalies show that the Mid-Cayman Spreading Center (MCSC) has been spreading at ~15 mm/yr (F.R.) since 20 Ma, if not 49 Ma. At a little over 100 km in length, the MCSC is now recognized to host oceanic core complexes (OCCs), hydrothermal vents, and a seafloor of variably distributed lower crustal gabbros, upper mantle peridotite/serpentinite, and basaltic lavas. Though spreading rate appears to be relatively symmetric over geologic time, the structure of the CT is quite asymmetric, with a broad region of low gravity and somewhat lineated magnetic anomalies to the east, and gravity highs and irregular magnetic anomalies to the west. Until now it has been difficult to further assess the nature of the CT because of the sparse and generally old data from the region; the CT’s claim on thinnest crust, for example, stems primarily from pre-1960’s seismic data and inferences from satellite gravity. The CaySEIS active-source OBS-experiment on the R/V Meteor thus set out in April of 2015 to provide a more complete, deeper view of the CT. A serendipitous discovery during the expedition is that the off-axis seafloor is characterized by curvilinear ridges preserving what appear to be dismembered OCCs. Thus, a previously proposed model based on the oblique volcanic ridge to the south of the axial OCC, Mt. Dent, could also apply to the geologic history of the CT. This model, which we call “the magmatic cleaver”, envisions how intrusions cut the OCC surfaces and raft the hanging-wall-dominated portion of the OCC to the east, and the footwall-dominated portion to the west. The “cleaver” appears to have been operating over at least the last 20 Ma, illustrating how melt flow in ultraslow-spread crust can create distinctive seafloor morphologies.