V21A-3031
Wide-Angle Refraction Tomographic Inversion of Mid Cayman Spreading Center and its Oceanic Core Complex, CaySEIS Experiment

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Jennifer Harding1, Harm J Van Avendonk1, Nicholas W Hayman2, Ingo Grevemeyer3, Christine Peirce4, Anke Dannowski3 and Cord A Papenberg3, (1)University of Texas at Austin, Austin, TX, United States, (2)Institute for Geophysics, Austin, TX, United States, (3)GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany, (4)University of Durham, Durham, DH1, United Kingdom
Abstract:
The CaySEIS experiment, conducted in April 2015, is a multi-national collaborative seismic study of the Mid Cayman Spreading Center (MCSC), an ultra-slow spreading center [15 mm/yr fr] in the Caribbean Sea. Ultra-slow spreading centers are thought to have very thin crust and a paucity of magmatism due to cooler mantle conditions. However, the suggestion that gabbro-cored oceanic core complexes (OCCs), volcanic deposits, and multiple layers of hydrothermal vents are widespread in the MCSC and other ultra-slow spreading centers has led to questions about the relationship between seafloor spreading rates and magmatism. To investigate this further, we conducted the CaySEIS experiment, with five wide-angle seismic refraction lines parallel and perpendicular to the neovolcanic zone. This analysis is based on two east-west oriented 100-km-long seismic refraction lines, which were each occupied by 18 ocean bottom seismometers. Line 2 lies across the central MCSC and an OCC called Mt. Dent. Line 3 crosses the northern end of the MCSC near the Oriente Transform Zone. With the wide-angle OBS data we can image the seismic velocity structure of Mt. Dent and distinguish between two models of OCCs – either Mt. Dent is composed of mostly gabbro with peridotite lenses identified by a low velocity gradient, or it is composed of mostly peridotite with gabbroic bodies identified by a constant velocity gradient. The crustal structure of both lines gives more insight into the asymmetry of the MCSC and the style of seafloor spreading to the east vs. the west. The 2-D velocity models reveal Mt. Dent has thick crust of 8 km with a low velocity gradient, supporting the magmatic gabbroic origin of OCCs. The surrounding crust to the west of the MCSC is highly variable, with areas of very thin crust. The crust to the east of the MCSC has an approximately constant thickness of 4 km. The development of OCCs may contribute to the crustal heterogeneity of ultra-slow spreading centers.