H21G-1467
Size-dependent Turbidimatric Quantification of Mobile Colloids in Field Samples

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Jing Yan, Univ of DE-Plant & Soil Scienc, Newark, DE, United States, Xia Meng, Xishuangbanna Tropical Botanical Gardens, Kunming, China and Yan Jin, University of Delaware, Newark, DE, United States
Abstract:
Natural colloids, often defined as entities with sizes < 1.0 μm, have attracted much research attention because of their ability to facilitate the transport of contaminants in the subsurface environment. However, due to their small size and generally low concentrations in field samples, quantification of mobile colloids, especially the smaller fractions (< 0.45 µm), which are operationally defined as dissolved, is largely impeded and hence the natural colloidal pool is greatly overlooked and underestimated. The main objectives of this study are to: (1) develop an experimentally and economically efficient methodology to quantify natural colloids in different size fractions (0.1-0.45 and 0.45-1 µm); (2) quantify mobile colloids including small colloids, < 0.45 µm particularly, in different natural aquatic samples. We measured and generated correlations between mass concentration and turbidity of colloid suspensions, made by extracting and fractionating water dispersible colloids in 37 soils from different areas in the U.S. and Denmark, for colloid size fractions 0.1-0.45 and 0.45-1 µm. Results show that the correlation between turbidity and colloid mass concentration is largely affected by colloid size and iron content, indicating the need to generate different correlations for colloids with constrained size range and iron content. This method enabled quick quantification of colloid concentrations in a large number of field samples collected from freshwater, wetland and estuaries in different size fractions. As a general trend, we observed high concentrations of colloids in the < 0.45 µm fraction, which constitutes a significant percentage of the total mobile colloidal pool (< 1 µm). This observation suggests that the operationally defined cut-off size for “dissolved” phase can greatly underestimate colloid concentration therefore the role that colloids play in the transport of associated contaminants or other elements.