C11A-0744
Testing Models of Modern Glacial Erosion of the St. Elias Mountains, Alaska Using Marine Sediment Provenance

Monday, 14 December 2015
Poster Hall (Moscone South)
Michelle L Penkrot1, John M Jaeger2, Dylan P Loss2 and Emilie Bruand3, (1)University of Florida, Ft Walton Beach, FL, United States, (2)University of Florida, Gainesville, FL, United States, (3)Portsmouth University, School of Earth and Environmental Sciences, Portsmouth, United Kingdom
Abstract:
The glaciated coastal St. Elias Range in Alaska is a primary site to examine climate-tectonic interactions. Work has primarily focused on the Bering-Bagley and Malaspina-Seward ice fields, utilizing detrital and bedrock zircon and apatite geochronology to examine local exhumation and glacial erosion (Berger et al., 2008; Enkelmann et al., 2009; Headly et al., 2013). These studies argue for specific regions of tectonically focused or climatically widespread glacial erosion. Analyzed zircon and apatite grains are sand size, however glacial erosion favors the production of finer-grained sediments. This study focuses on the geochemical provenance of the silt-size fraction (15-63μm) of surface sediments collected throughout the Gulf of Alaska (GOA) seaward of the Bering and Malaspina glaciers to test if the exhumation patterns observed in zircon and apatites are also applicable for the silt size fraction. Onshore bedrock Al-normalized elemental data were used to delineate sediment sources, and a subset of provenance-applicable elements was chosen. Detrital thermochronologic data suggest that sediment produced by the Bagley/Bering system is derived from bedrock on the windward side with input from the Chugach Metamorphic Complex (CMC) underlying the Bagley only during glacial surge events (Headly et al., 2013). Geochemical observations of GOA silt deposited during the 1994-95 surge event confirm input of CMC sediment (elevated in Cr, Ni, Sc, Sr, depleted in Hf, Pb and Rb relative to Kultieth and Poul Creek formations). We also observe a windward-side sediment source (Kultieth and Poul Creek). It is hypothesized that the sediment carried by the Malaspina is primarily from CMC rock underlying the Seward ice field mixed with Yakataga formation rock that underlies the Seward throat (Headly et al., 2013). Geochemical observations of GOA silt support this hypothesis.