Synthesis of Trace Gas and Aerosol Observations and Evaluation of Modelled Short-lived Climate Pollutants Across the Pan-Eurasian High Latitudes

Monday, 14 December 2015
Poster Hall (Moscone South)
Steve Arnold, University of Leeds, School of Earth and Environment, Leeds, United Kingdom and Tuomo Nieminen, University of Helsinki, Helsinki, Finland
Model calculations suggest that changes in short-lived climate pollutants (SLCPs) such as ozone and aerosol may have contributed significantly to rapid Arctic warming over the past century. Arctic tropospheric budgets of SLCPs are impacted by long-range transport of trace gases and aerosols from Europe, Asia and N. America, but also by local sources such as gas flaring, shipping and boreal fires. Recently, the POLARCAT Model Intercomparison Project (POLMIP) showed that significant model biases persist through the depth of the European and North American high latitude troposphere in modelled trace-gas abundances. Evaluation of models over the Siberian high latitudes is challenging due to a severe paucity of available observations, despite the potential importance of this region as a route for European pollution export to the Arctic. Despite the existence of a number of limited datasets, which could be used for model evaluation in this region, until now no effort has been made to synthesise and exploit these observations to evaluate modelled abundances of SLCPs such as tropospheric ozone & aerosol.

In this presentation, we will show evaluation of simulated aerosol, tropospheric ozone, and precursor species in several global chemical transport models, using a synthesis of available surface, aircraft and satellite observations over the high latitude pan-Eurasian region. We use models and observations to investigate source regions contributing to remote Siberian SLCP abundances over the annual cycle, and show substantial biases in simulated aerosol and trace gas concentrations that are consistent across a suite of different models. These comparisons constitute the first multi-model evaluation of tropospheric composition in the pan-Eurasin region using observations from across the broad region. Finally, we use the model simulations to determine optimum locations for the development of future monitoring activities in high latitude Eurasia with an aim of better constraining SLCP sources and sinks in this region.