DI41A-2592
Record of the Pacific Large Low Shear Velocity Province Upwellings Preserved in the Cretaceous Large Igneous Provinces
Thursday, 17 December 2015
Poster Hall (Moscone South)
Pilar Madrigal1, Esteban Gazel1, Kennet E Flores2, Michael Bizimis3 and Brian R Jicha4, (1)Virginia Polytechnic Institute and State University, Blacksburg, VA, United States, (2)CUNY Brooklyn College, Earth and Environmental Sciences, Brooklyn, NY, United States, (3)University of South Carolina Columbia, Columbia, SC, United States, (4)University of Wisconsin Madison, Madison, WI, United States
Abstract:
As the surface expression of deep mantle dynamics, Large Igneous Provinces (LIPs) are associated with the edges of large low shear velocity provinces (LLSVP) rooted at the core-mantle boundary. Instabilities in the LLSVP can cause periodic upwellings of material in the form of mantle plumes, which impact the lithosphere forming LIPs. However, the time frames of these massive lava outpourings are still uncertain. While continental LIPs are more readily accessible, oceanic LIPs have only been studied through drilling and sampling of fragments accreted to continental margins or island arcs, hence, they are relatively less understood. The impact of oceanic LIPs on oceanic biota is conspicuously recorded in global occurrences of black shale deposits that evidence episodes of anoxia and mass extinctions shortly after the formation of LIPs that ultimately can affect life on the entire planet. Our new geochemical and geochronological data of accreted Pacific LIPs found in the coasts of Nicoya Peninsula in Costa Rica record three LIP pulses possibly reflecting upwelling periods of the LLSVP at 140, 120 and 90 Ma. In order to test different models of origin of these LIPS, we created a complete reconstruction of the Pacific Plate configuration from the Mid-Jurassic to Upper-Cretaceous to show the existing correlation between upwelling pulses at edges of the Pacific LLSVP, oceanic anoxic events and the age from Pacific LIPs. We propose that since the formation of the Pacific plate at circa 175-180 Ma, a series of upwellings that interacted with mid-ocean ridge systems separated by 10-20 Ma have affected the planet periodically forming oceanic LIPs that still can be found today on the Pacific seafloor and accreted along the plate margins.