MR41C-2664
Geomechanical and Petrophysical Properties of Rift Basin Mudstones

Thursday, 17 December 2015
Poster Hall (Moscone South)
Natalia V Zakharova, Columbia University, Palisades, NY, United States, David Goldberg, Lamont-Doherty Earth Obs, Palisades, NY, United States, Daniel Collins, Sandia Technologies, LLC, Houston, TX, United States and Nick Malkewicz, Schlumberger Carbon Services, Champaign, IL, United States
Abstract:
Mudstone caprocks are important components of reservoir systems in a variety of geologic and geoingeneering applications, but their properties and behavior under in situ conditions remain only partially understood. This study presents a detailed analysis of geomechanical and petrophysical properties of 20 lacustrine mudstones from the Mesozoic Newark Rift Basin, the largest of exposed rift basins in eastern North America, considered as a potential CO2 sequestration site. The samples were selected to represent variable lithology, organic content, redox state, structure (massive and thinly bedded), degree of matrix anisotropy, and burial depths. An extensive characterization program was funded by the U.S. Department of Energy’s National Energy Technology Laboratory (NETL), and included laboratory CT scans, XRD, SEM, MICP, porosity, permeability, and acoustic velocity measurements, as well as geomechanical testing of both matrix and fracture strength under a range of confining pressures. Core measurements were integrated with available logging data to allow for multiscale comparison and correlation. Most of the analyzed mudstones have the clay content of 50-70%, with abundant mica and detrital grains. The pore system is dominated by narrow micropores (mostly <5-100 microns wide), and nano-scale pore throats (0.005-0.05 microns). Full Mohr-Coulomb failure envelopes built for each mudstone type indicate a large variability in projected unconfined strength and the coefficient of internal friction. The dataset allows building empirical relations between compositional, structural and mechanical properties of these lacustrine mudstones, as well as physical parameters such as acoustic velocity (both laboratory and logging) and elastic moduli. These relations can be applied to other lacustrine mudstones in the East American rift basins, and provide important information for caprock stability modeling in these basins.