A Multi-omics Approach to Understand the Microbial Transformation of Lignocellulosic Materials in the Digestive System of the Wood-Feeding Beetle Odontotaenius disjunctus

Monday, 14 December 2015
Poster Hall (Moscone South)
Javier A. Ceja Navarro1, Ulas Karaoz2, Mari Nyyssonen1, Richard A. White III3, Mary Suzanne Lipton3, Joshua Adkins3, Xavier Mayali4, Meredith Blackwell5, Jennifer Pett-Ridge6 and Eoin Brodie1, (1)Lawrence Berkeley National Laboratory, Berkeley, CA, United States, (2)Lawrence Berkeley National Lab, Berkeley, CA, United States, (3)Pacific Northwest National Laboratory, Richland, WA, United States, (4)Lawrence Livermore National Laboratory, Livermore, CA, United States, (5)Louisiana State University, Baton Rouge, LA, United States, (6)Lawrence Livermore National Laboratory, Chemical Sciences Division, Livermore, CA, United States
Odontotaenius disjuctus is a wood feeding beetle that processes large amounts of hardwoods and plays an important role in forest carbon cycling. In its gut, plant material is transformed into simple molecules by sequential processing during passage through the insect’s digestive system. In this study, we used multiple 'omics approaches to analyze the distribution of microbial communities and their specific functions in lignocellulose deconstruction within the insect’s gut.

Fosmid clones were selected and sequenced from a pool of clones based on their expression of plant polymer degrading enzymes, allowing the identification of a wide range of carbohydrate degrading enzymes. Comparison of metagenomes of all gut regions demonstrated the distribution of genes across the beetle gut. Cellulose, starch, and xylan degradation genes were particularly abundant in the midgut and posterior hindgut. Genes involved in hydrogenotrophic production of methane and nitrogenases were more abundant in the anterior hindgut. Assembled contigs were binned into 127 putative genomes representing Bacteria, Archaea, Fungi and Nematodes. Eleven complete genomes were reconstructed allowing to identify linked functions/traits, including organisms with cellulosomes, and a combined potential for cellulose, xylan and starch hydrolysis and nitrogen fixation. A metaproteomic study was conducted to test the expression of the pathways identified in the metagenomic studyPreliminary analyses suggest enrichment of pathways related to hemicellulosic degradation. A complete xylan degradation pathway was reconstructed and GC-MS/MS based metabolomics identified xylobiose and xylose as major metabolite pools. To relate microbial identify to function in the beetle gut, Chip-SIP isotope tracing was conducted with RNA extracted from beetles fed 13C-cellulose. Multiple 13C enriched bacterial groups were detected, mainly in the midgut.

Our multi-omics approach has allowed us to characterize the contribution of the gut microbiota to the transformation of woody biomass and the distribution of microbial-driven function in the beetle’s gut. Through the study of such highly evolved polymer deconstruction and fermentation system we want to identify criteria for design of improved lignocellulosic fuel production processes.