A51D-0088
Contrasting ice microphysical properties of wintertime frontal clouds and summertime convective clouds

Friday, 18 December 2015
Poster Hall (Moscone South)
Wei Wu, University of Illinois at Urbana Champaign, Urbana, IL, United States and Greg M McFarquhar, University of Illinois at Urbana Champaign, Atmospheric Sciences, Urbana, IL, United States
Abstract:
The microphysical and optical properties of ice clouds were derived from measurements collected during the Colorado Airborne Multi-phase Cloud Study (CAMPS) and the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX) conducted in the winter of 2010-2011 over the Rocky Mountains and during the Midlatitude Continental Convective Clouds Experiment (MC3E) conducted in the summer of 2011 over Oklahoma. A two-dimensional cloud (2DC) probe, two-dimensional precipitation (2DP) probe and Fast 2DC probe were installed on the University of Wyoming King Air aircraft during CAMPS and a Cloud Imaging Probe (CIP) and Precipitation Imaging Probe were operated on the ground at the Storm Peak Laboratory during STORMVEX. A 2DC, CIP and a high volume precipitation spectrometer were installed in the University of North Dakota Citation aircraft during MC3E. The distributions of particle habits, number distribution functions, total number concentrations, ice water contents, precipitation rates, extinction and effective radius from four cases of wintertime frontal clouds sampled during CAMPS/STORMVEX and from four cases of the stratiform region of summer convective systems from MC3E are compared. It is found that there is higher percentage of pristine ice particles, such as dendrites and columns, in the wintertime frontal clouds than in the summertime convective clouds, where the dominant habits are rimed particles. The number distribution functions are generally broader in the summertime clouds than in the wintertime frontal clouds. In addition, the number concentrations and ice water contents are generally lower in the wintertime frontal clouds than in the summertime convective clouds when comparing the same temperature ranges. Implications about the potential microphysical processes that are acting in these two types of ice clouds are discussed. The results in this study are also compared with previous studies using data from other field campaigns.