T33A-2931
Late Cretaceous-Early Eocene Climate Change Linked to Tectonic Eevolution of Neo-Tethyan Subduction Systems

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Oliver E Jagoutz1, Leigh Royden1 and Francis A Macdonald2, (1)Massachusetts Institute of Technology, Cambridge, MA, United States, (2)Harvard University, Cambridge, MA, United States
Abstract:
In this presentation we demonstrate that the two tectonic events in the late Cretaceous-Early Tertiary triggered the two distinct cooling events that followed the Cretaceous Thermal Maximum (CTM).

During much of the Cretaceous time, the northern Neo Tethyan ocean was dominated by two east-west striking subduction system. Subduction underneath Eurasia formed a continental arc on the southern margin of Eurasia and intra oceanic subduction in the equatorial region of the Neo Tethys formed and intra oceanic arc. Beginning at ~85-90 Ma the western part of the TTSS collided southward with the Afro-Arabian continental margin, terminating subduction. This resulted in southward obduction of the peri-Arabian ophiolite belt, which extends for ~4000 km along strike and includes the Cypus, Semail and Zagros ophiolites. At the same time also the eastern part of the TTS collided northwards wit Eurasia. After this collisional event, only the central part of the subduction system remained active until it collided with the northern margin of the Indian continent at ~50-55 Ma. The collision of the arc with the Indian margin, over a length of ~3000 km, also resulted in the obduction of arc material and ophiolitic rocks. Remnants of these rocks are preserved today as the Kohistan-Ladakh arc and ophiolites of the Indus-Tsangpo suture zone of the Himalayas.

Both of these collision events occurred in the equatorial region, near or within the ITCZ, where chemical weathering rates are high and are contemporaneous with the onset of the global cooling events that mark the end of the CTM and the EECO. The tectonic collision events resulted in a shut down of subduction zone magmatism, a major CO2 source and emplacement of highly weatherable basaltic rocks within the ITCZ (CO2 sink). In order to explore the effect of the events in the TTSS on atmospheric CO2, we model the potential contribution of subduction zone volcanism (source) and ophiolite obduction (sink) to the global atmospheric CO2 budget. Our results show that the global ocean bottom water temperature are highly correlated with CO2 variation modeled due to the arc-continent collisions along the TTSS. Our results show that global climate in the Late Cretaceous to Early Eocene have likely been strongly changed due to the tectonic evolution of the Neo-Tethys.