NS33A-07
Investigating the seismic signal of elephants: using seismology to mitigate elephant human conflict

Wednesday, 16 December 2015: 15:20
3024 (Moscone West)
Susan Jane Webb, University of the Witwatersrand, School of Geosciences, Johannesburg, South Africa
Abstract:
Human interactions with wild elephants are often a source of conflict, as elephants invade inhabited lands looking for sustenance. In order to mitigate these interactions, a number of elephant defense systems are under development. These include electric fences, bees and the playback of warning calls recorded from elephants. With the discovery that elephants use seismic signals to communicate (O’Connell-Rodwell et al., 2006, Behav. Ecol. Sociobiol.), it is hoped that seismic signals can also be used to help reduce conflict.

Our current research project investigates the spectral content of the elephant seismic signal that travels through the ground using a variety of geophones and seismometers. Our experimental setup used a Geometrics Geode 24 channel seismic system with an array of 24 geophones spaced 1 m apart in an area of compact soil overlying weathered granites. Initially we used 14 Hz vertical geophones. The ground and ambient noise conditions were characterized by recording several hammer shots. These were used to identify the air wave, wind noise, and the direct wave, which had a dominant frequency of ~50 Hz.

Several trained elephants that ‘rumble’ on command were then deployed ~5 m perpendicular to a line of 24 (14 Hz) vertical geophones between the 1 and 10 m geophone positions. We recorded a number of different elephants and configurations, and digitally recorded video for comparison. An additional deployment of 20 (14 Hz) horizontal geophones was also used. For all data, the sample interval was 0.25 ms and the recording length was 16 s as the timing of the rumbles could not be precisely controlled.

We were able to identify the airwave due to the elephant’s rumble with velocities between 305-310 m/s and the ground seismic signal due to the rumble with frequencies between 20-30 Hz. Our next experiment will include broadband seismometers at a further distance, to more fully characterize the frequency content of the elephant signal.