B53B-0549
Assessing the impact of radiative parameter uncertainty on plant growth simulation

Friday, 18 December 2015
Poster Hall (Moscone South)
Toni Viskari, Boston University, Boston, MA, United States
Abstract:
Current Earth system models do not adequately project either the magnitude or the sign of carbon fluxes and storage associated with the terrestrial carbon cycle resulting in significant uncertainties in their potential feedbacks on the future climate system. A primary reason for the current uncertainty in these models is the lack of observational constraints of key biomes at relevant spatial and temporal scales. There is an increasingly large and highly resolved amount of remotely sensed observations that can provide the critical model inputs. However, effectively incorporating these data requires the use of radiative transfer models and their associated assumptions. How these parameter assumptions and uncertainties affect model projections for, e.g., leaf physiology, soil temperature or growth has not been examined in depth.

In this presentation we discuss the use of high spectral resolution observations at the near surface to landscape scales to inform ecosystem process modeling efforts, particularly the uncertainties related to properties describing the radiation regime within vegetation canopies and the impact on C cycle projections. We illustrate that leaf and wood radiative properties and their associated uncertainties have an important impact on projected forest carbon uptake and storage. We further show the need for a strong data constraint on these properties and discuss sources of this remotely sensed information and methods for data assimilation into models. We present our approach as an efficient means for understanding and correcting implicit assumptions and model structural deficiencies in radiation transfer in vegetation canopies. Ultimately, a better understanding of the radiation balance of ecosystems will improve regional and global scale C and energy balance projections.