SH41F-05
Interpretation of the 12 May 2012 ground level enhancement event

Thursday, 17 December 2015: 09:00
2011 (Moscone West)
Murray Dryer, Ph.D., Organization Not Listed, Washington, DC, United States, Chin-Chun Wu, US Naval Research Laboratory, Washington, DC, United States, Kan Liou, JHU/Applied Physics Lab, Laurel, MD, United States and Shi Tsan Wu, University of Alabama in Huntsville, Huntsville, AL, United States
Abstract:
The 12 May 2012 solar event is associated with a moderate flare (M5.1) and, surprisingly, a ground level enhancement (GLE) event. It is the first GLE of the solar cycle 24 (or since December 2006). Because GLEs are considered as the highest energy tail in the solar energetic particle (SEP) spectrum, it is generally believed that GLEs must be generated at very strong shocks. Here, we conduct a simulation study of a number of major (> M5.0) flare events that occurred in the current solar cycle up to 2013, using the H3DMHD simulation code. The H3DMHD (Wu et al. 2007, JGR) combines the kinematic solar wind model (HAF) for regions near the solar surface (2.5–18 Rs) and a three-dimensional magnetohydrodynamics model (Han et al. 1988), which takes output from HAF at 18 Rs and propagates outward up to 1.7 AU. The H3DMHD code has been fully tested and is suitable for simulating not only the quiet solar wind, but also disturbances propagating in the solar wind. Our preliminary study result suggests that the 12 May 2012 was magnetically well connected, whereas others were not. We will present the detailed result, including the shock structure and intensity driven by the 12 May 2012 CME event, and discuss the result implication.