NG13A-1875
Optimizing Shear Stresses at the Tip of a Hydraulic Fracture - What Is the Ideal Orientation of Natural Fractures with respect to Hydraulic Fracture?

Monday, 14 December 2015
Poster Hall (Moscone South)
Farrokh Sheibani, Massachusetts Institute of Technology, Cambridge, MA, United States
Abstract:
While many shale and unconventional plays are naturally fractured (or contain planes of weakness), these are often cemented and effectively impermeable to flow. Stress shadow behind the tip of a hydraulic fracture stablizes natural fractures. It essentially means that if impermeable natural fractures and weakness planes are not opened when the hydraulic fracture tip passes, they will remain closed and impermeable to flow.

In this work a detailed and comprehensive evaluation of tip shear stresses and associated natural fracture or weakness plane shear is presented. From analytical work, the theoretical shear stresses from a fracture tip are first presented. The effect of fracture length, in-situ pore pressure, maximum horizontal remote stress, net pressure, natural fracture friction coefficient and the direction of natural fracture with respect to the hydraulic fracture on shear stimulation at the tip are calculated using the plane strain analytical solution of a 2-D fracture, and assuming simple linear coulomb friction law. Since slippage along natural fractures will locally violate the assumptions used in the analytical solutions and to incorporate the effect of weakness planes on stress-strain and displacement field, 2-D and 3-D finite element model (FEM) simulations are presented that build upon both the analytical and continuum solutions. FEM models are capable of numerically simulating the slippage through weakness planes by using contact elements. This advantage makes FEM tools very appropriate for synthetically generating microseismicity, which can then be evaluated for mode, focal mechanism, and magnitude.

The results of the simulations highlight the critical parameters involved in shearing and opening cemented natural fractures in unconventionals - which is a critical component of stimulation and production optimization for these plays. According to the results, the ideal orientation of natural fractures with respect to hydraulic fracture from shear stimulation standpoint during different stage of hydraulic fracture propagation depends on several factors including natural fracture mechanical properties (i.e. angle of friction), operation conditions (net pressure, fracture fluid viscosity), and in-situ stress conditions.