B31B-0555
Multimedia Modeling System Response to Regional Land Management Change

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Ellen J Cooter, U.S. EPA, RTP, NC, United States
Abstract:
A multi-media system of nitrogen and co-pollutant models describing critical physical and chemical processes that cascade synergistically and competitively through the environment, the economy and society has been developed at the USEPA Office of Research and Development. It is populated with linked or fully coupled models that address nutrient research questions such as, “How might future policy, climate or land cover change in the Mississippi River Basin affect Nitrogen and Phosphorous loadings to the Gulf of Mexico” or, “What are the management implications of regional-scale land management changes for the sustainability of air, land and water quality?” This second question requires explicit consideration of economic (e.g. sector prices) and societal (e.g. land management) factors. Metrics that illustrate biosphere-atmosphere interactions such as atmospheric PM2.5 concentrations, atmospheric N loading to surface water, soil organic N and N percolation to groundwater are calculated. An example application has been completed that is driven by a coupled agricultural and energy sector model scenario. The economic scenario assumes that by 2022 there is: 1) no detectable change in weather patterns relative to 2002; 2) a concentration of stover processing facilities in the Upper Midwest; 3) increasing offshore Pacific and Atlantic marine transportation; and 4) increasing corn, soybean and wheat production that meets future demand for food, feed and energy feedstocks. This production goal is reached without adding or removing agricultural land area whose extent is defined by the National Land Cover Dataset (NLCD) 2002v2011 classes 81 and 82. This goal does require, however, crop shifts and agricultural management changes. The multi-media system response over our U.S. 12km rectangular grid resolution analysis suggests that there are regions of potential environmental and health costs, as well as large areas that could experience unanticipated environmental and health benefits. Alternative land management that may reduce multimedia environmental costs and enhance benefits will be discussed.