H51N-1584
Characterizing Runoff and Water Yield from Headwater Catchments in the Southern Sierra Nevada

Friday, 18 December 2015
Poster Hall (Moscone South)
Mohammad Safeeq, University of California Merced, Merced, CA, United States and Carolyn T Hunsaker, USDA Forest Service, Vallejo, CA, United States
Abstract:
In a mediterranean climate where much of the annual precipitation falls during winter, the snow-capped Sierra Nevada serves as the primary source of dry season runoff that supports agriculture, industries, urban, and other ecosystems. Increased warming has led to significant reductions in mountain snowpack accumulation and earlier snowmelt throughout the western United States where most of the snow accumulates at temperatures near the freezing point. As a result, declines in dry season runoff magnitude, earlier runoff timing, and altered flood risk have been reported across the region. An important question in this context is, how to best manage forested catchments for water and other ecosystem services? We depict the differences in hydrologic response of ten catchments in the Kings River Experimental Watersheds (KREW) research project using continuous precipitation, snow, and runoff data during 2004-2014. The size of these catchments ranges from 50 to 475 ha, and they span a 600-m elevation range in the rain snow transitional zone. In terms of soil, Shaver and Gerle-Cagwin dominate the lower elevation Providence catchments, and Cagwin soils dominate the higher elevation Bull catchments. The majority of these catchments have southwest aspect, moderate average slope (i.e. <25%), and a well-developed drainage network with drainage density ranging from 4.6 to 10.1 km/km2. Bull catchments, on average, have higher runoff than the Providence catchments across all hydrologic signatures extracted from daily hydrographs. Mean annual runoff ranges between 281 to 408 mm in Providence and 436 to 656 mm in Bull catchments despite no significant difference in precipitation among KREW’s four meteorological stations. However, high elevation Bull catchments receive significantly more precipitation as snow than the low elevation Providence catchments. The average runoff ratio ranges from 18% to as high as 43% among different catchments, indicating that the catchment evapotranspiration exceeds the catchment runoff. Inter-catchment variability in runoff, runoff ratio, characteristics of runoff ratio-precipitation relationship (i.e. slope and intercept), and precipitation elasticity of runoff can be primarily explained by differences in catchment elevation, recession characteristics, and drainage density.