A33L-0370
VERTICAL STRUCTURE OF AEROSOLS AND MINERAL DUST TRANSPORT OVER THE BAY OF BENGAL USING MULTI-SATELLITE OBSERVATIONS.

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Lakshmi Naduparambil Bharathan, Vikram Sarabhai Space Center, Thiruvananthapuram, 695, India
Abstract:
Bay-of-Bengal (BoB), a small oceanic region Eat to Indian land mass, surrounded by heavily inhabited land masses, experiences different types of air-masses in different seasons of contrasting wind patterns, which makes it a region of large heterogeneity in the context of regional climate forcing due to atmospheric aerosols. Heterogeneity of aerosol system over the Bay of Bengal is mainly determined by three distinct source regions, which are east coast of India/central India, China/east Asia and Arabian region. Continental aerosols transported through higher elevations over BoB lead to significant impacts in regional climate by modifying the vertical thermal structure of the atmosphere and associated circulation dynamics. The study aims at a comprehensive understanding on the spatial and temporal heterogeneity of elevated aerosol over the BoB using the observations of Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). Being capable of short wave scattering and long wave absorption, mineral dust aerosols can affects the energetics of the atmosphere over any region.Owing to its influence on Indian monsoon rainfall and regional climate, the study aims to comprehend on the spatial and seasonal variation of mineral dust transport over the Bay of Bengal. vertical distribution of the dust extinction coefficient over the Bay of Bengal for all seasons, is derived, using a dust separation scheme that uses the depolarization measurements, a priori information on lidar ratio of dust, depolarization ratio of dust and that of non-dust aerosols. Being highly non-spherical, mineral dust significantly depolarize the radiation and possess distinct range of depolarization ratio. This property of dust is made use to identify and quantify dust over the study region. Seasonal variation of dust fraction over the Bay of Bengal is estimated seperately from CALIPSO back scattering coefficients , MODIS AOD and fine-mode fraction and GOCART simulations and found that they are agreeing reasonably. Premonsoon time over the Indian region is found to be relatively dust dominated and winter time is more or less devoid of dust transport.