MR23C-07
Contrasting frictional behaviour of fault gouges containing Mg-rich phyllosilicates
Abstract:
The clay mineralogy of fault gouges has important implications on frictional properties and stability of fault planes. We studied the specific case of the Galera fault zone where fault gouges containing Mg-rich phyllosilicates appear as hydrothermal deposits related to high salinity fluids enriched in Mg2+. These deposits are dominated by sepiolite and palygorskite, both fibrous clay minerals with similar composition to Mg-smectite. The frictional strengths of sepiolite and palygorskite have not yet been determined, however, as they are part of the clay mineral group, it has been assumed that their frictional behaviour would be in line with platy clay minerals.We performed frictional sliding experiments on powdered pure standards and fault rocks in order to establish the frictional behaviour of sepiolite and palygorskite using a triaxial deformation apparatus with a servo-controlled axial loading system and fluid pressure pump. Friction coefficients for palygorskite and sepiolite as monomineralic samples were found to be 0.65 to 0.7 for dry experiments, and 0.45 to 0.5 for water-saturated experiments. Although these fibrous minerals are part of the phyllosilicates group, they show higher friction coefficients and their mechanical behaviour is less stable than platy clay minerals. This difference is a consequence of their stronger structural framework and the discontinuity of water layers.
Our results present a contrast in mechanical behaviour between Mg-rich fibrous and platy clay minerals in fault gouges, where smectite is known to considerably reduce friction coefficients and to increase the stability of the fault plane leading to creeping processes. Transformations between saponite and sepiolite have been previously observed and could modify the deformation regime of a fault zone. Constraining the stability conditions and possible mineral reactions or transformations in fault gouges could help us understand the general role of clay minerals in fault stability.